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Abstract : Fumnoacetylene phytoalexins wyemne Ia and dihy&wyervne lb were etEciently 
synthesized in muki&am qmntitics starting from furfirre The key step involvedan ac~athm byacetyJenjc 
N-methow-N-methyhuni&s 3a,b. 

Phytoalexins are natural fungitoxic compounds which are produced by plants in 
response to fungal infections. 1 Numerous studies have established that the resistance to 
fungal diseases is strongly dependent to the hnportance and the rapidity of phytoalexins 
production. For instance, furanoacetylene phytoalexins, such as wyerone 1 a, 
dihydrowyerone 1 b and wyerone epoxide 2 have been isolated in small amounts from 
infected broad beans (Vicia f&a L.; Fam. Papilionaceae).2 Authentic standards of these 
phytoalexins were required in order to quantify their biological production. 
Furthermore substantial amounts of these products, and some selected analogs, were 
desirable in order to estimate their antifungal activity towards several fungi (Botrytis, 
Ascochy&). Previous syntheses of 1 a and 1 b rely on the condensation between methyl 3- 
(5formyl-2-furyl)acrylate with appropriate Grignard reagents.283 In a recent synthesis 
of dihydrowyerone, the ketone functionality was finally introduced by a palladium- 
catalyzed coupling of an acid chloride with an alkynylstannane.4 In this paper, we 
report on an efficient synthesis of wyerone and dihydrowyerone making use of N- 
methoxy-N-methylamides 3 as highly effective acylating reagents.5 
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Condensation of 2-heptynoic acid with 1.1 equiv of N,O-dimethylhydroxylamine 
hydrochloride in the presence of 1.03 equiv of pyridine and 2 equiv of 
dicyclohexylcarbodiimide in acetonitrile afforded N-methoxy-N-methyl-2-heptynamide 
3b in 95% yield.6 a-Lithiation of 2-(2-furanyl)l&dioxolane 47 using n-butyllithium 
followed by acylation using 3ba afforded the acetylenic ketone Sb in 79% yield.9 
Acidic cleavage of the dioxolane group (ether / 50% aq. H2SO4 2: 1, rt, 15 h.) yielded 
quantitatively aldehyde 6b which upon reaction with 1.23 equiv of trimethyl 
phosphonoacetate in the presence of 3 equiv of lithium hydroxide monohydrate in THP / 
water 5: 110 furnished dihydrowyerone 1 b in 8 1% yield (64% overall yield from 3b in 
3 steps) which was separated by chromatography on silica gel from a small amount of 
less polar Z isomer (4%). 
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(a) n-BuLi,THF,-80", Ihtha3a or3b, -80",45 mn, 79%; (b) Et20/50% aq. H2SO4 2: 1, 20", 15h, 

quark; (c) (McO)~P(OICH~CO~M~, LiOH, THF, lh, 20”, 69% for la, 8 1% for 1 b. 

For the synthesis of wyerone 1 a, the introduction of the enyne unit was best 
performed by means of enynamide 3a. 11 Propiolic acid was converted into N-methoxy- 
N-methyl-2-propynamidet2 in 60% yield as previously described for 3b. Palladium- 
catalyzed coupling with (Z)-1 -iodo- 1 -butene t 3 using 0.05 equiv of tetrakis(tri- 
phenylphosphine)palladium(O) in the presence of 0.15 equiv of cuprous iodide and 2 
equiv of triethylamine in toluene stereoselectively afforded (Z)-N-methoxy-N-methyl-4- 
hepten-2ynamide 3a in 50% yield.14 Acylation of 4 by 3a via its a-lithio derivative 
followed by dioxolane cleavage as previously described afforded aldehyde 6a. 
Condensation with trimethyl phosphonoacetate then afforded wyerone, 1 a, in 69% yield 
(27% overall yield from known (Z)-1-iodo-1-butene in 4 steps) after chromatographic 
separation from a small amount (7%) of Z-isomer. These compounds were characterized 
by their spectroscopic and analytical properties.15 



In summary, these short and efficient syntheses starting from a cheap furan 
precursor (furfural) enabled to obtain multigram quantities of wyerone and 
dihydrowyerone required for biological studies. Furthermore, the present strategy 
appears versatile and could be used to prepare new anaIogs by using other phosphonate 
reagents in the last step. The potential of acetylenic N-methoxy-N-methylamides is also 
illustrated in these syntheses. 
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